Cognitive penetrability

Dustin Stokes (University of Toronto)

Abstract
Perception is typically distinguished from cognition. For example, seeing is importantly different from believing. And while what one sees clearly influences what one thinks, it is debateable whether what one believes and otherwise thinks can influence, in some direct and non-trivial way, what one sees. The latter possible relation is the cognitive penetration of perception. Cognitive penetration, if it occurs, has implications for philosophy of science, epistemology, philosophy of mind, and cognitive science. This paper offers an analysis of the phenomenon, its theoretical consequences, and a variety of experimental results and possible interpretations of them. The paper concludes by proposing some constraints for analyses and definitions of cognitive penetrability.

The dominant tradition in philosophy and psychology is to distinguish human perceptual experience from human cognition. There is something that it is like to have perceptual experiences (Nagel 1974). Visual, auditory and other sensory experiences are characterized by a qualitative phenomenology and depend directly upon one or more sensory organ. It feels a distinctive way, from the first-person perspective of the perceiver, to taste a sharp cheese or hear wind blowing through a pine tree. Cognitive states do not depend upon or result directly from sensory organs, and it is controversial whether they have any distinctive phenomenology. Tradition has it that perception influences cognition: what we see, hear, touch and otherwise perceive influences what we believe, intend, desire, and so on. But this causal influence is supposed not to go the opposite way: you have qualitative perceptual experience of the world in a way that is (generally) independent of what you know, believe, intend, and so on.

Perception, then, is supposed (by most) to be cognitively impenetrable. This claim is sometimes put as one about perceptual processing: the information processed by the visual system, say, is not affected by information in higher-level cognitive systems. Another claim can be made about the phenomenal character of perceptual experience: the way one perceives an object or feature of one’s environment is not directly affected by
background cognitive states. A cognitive penetrability thesis denies one or other (or both) of these claims, and maintains instead that perception is, sometimes, penetrated by cognition. This paper aims to further clarify cognitive penetrability theses, identify their importance to philosophy and cognitive science, and analyze relevant empirical data.

I. Further characterizing cognitive penetration

Cognitive states often influence how one perceives the world. For example I want some chocolate and I believe there is chocolate in the cupboard. This combination of belief and desire motivates me to go to the cupboard and get some chocolate. As a result of this simple casual chain of events, I have an enjoyable perceptual experience of chocolate (in fact several: I taste, smell, touch, and see chocolate). If cognitive penetration were a mere causal relation then this would be an instance of the phenomenon. But cognitive penetration is supposed to be more interesting than this (and more consequential; see section II); so not just any causal relation will suffice.

One way to begin to narrow the focus to the relevant phenomenon is to consider characterizations of the opposing cognitive impenetrability thesis. As one recent author describes it, perception is cognitively impenetrable if it is not possible for any two perceivers (or for the same perceiver at different times) to have experiences with distinct content or character when one holds fixed the object or event of perception, the perceptual conditions (e.g. lighting), the spatial attention of the subject, and the conditions of the sensory organ(s) (see Macpherson, forthcoming). The virtue of this characterization

1 Some theorists have mostly emphasized perceptual processing (Pylyshyn 1999; Raftopoulos 2001). While others have mostly emphasized phenomenal experience (Siegel 2011; Lyons, forthcoming). Plausibly, a cognitive influence on perceptual experience implies a cognitive influence on perceptual processing. More on this implication and, generally, the distinction between penetration of experience vs. penetration of processing in section II. See also Macpherson (forthcoming) and Stokes and Bergeron (manuscript).
is that it identifies and sets to one side various factors that should not contribute to a genuine case of cognitive penetration: differences in distal and proximal stimulus, differences in attention, and differences in the sensory organ(s). Inverting this characterization: if in these very same circumstances, it is possible for two perceivers to have experiences with distinct content or character (e.g. seeing an object as differently coloured), then cognitive penetration is possible.

Zenon Pylyshyn suggests an additional condition, claiming that cognitive penetration requires a “semantically coherent” connection between the penetrating cognitive state and the penetrated perception (Pylyshyn 1999: 343). On one interpretation, the idea here is that the belief, desire, or other background cognitive state must stand in an inference-supporting relation to the experience or perceptual process. To take a toy example, suppose I am on a deserted island and I believe that the (unripe) banana in my hand is yellow. And suppose that I see the banana as yellow, and *because* of my belief that it is yellow. In this case, the perceptual experience has (roughly) the same content as the background belief and this semantic coherence allows for inference. The motivation for this criterion is the same as above: a mere causal connection between cognitive states and perception will not suffice for cognitive penetration.

One may worry, however, about the strength of Pylyshyn’s semantic criterion. Consider another debate in the philosophy of perception. An epistemic argument for the claim that perceptual experience is *conceptual* goes as follows. If perceptual experience provides reason for belief (and thus knowledge), then experience must be structured by concepts. Since experience *does* provide reason for belief, experience must be structured by concepts (McDowell 1994). Never mind the success of this argument; its operative conditional premise is motivated by the thought that in order to stand in a rational
reason-conferring relation with belief, experience must stand in inferential relations with belief. And to do this, experience must be similarly structured. Thus to appropriately “hook up” with belief, the content of perceptual experience must, like belief contents, have a conceptual structure. So my belief that “The tomato is red” is justified by my experience of the object before me only if the representational content of that experience is somehow constituted by the concepts ‘TOMATO’ and ‘RED’. In this argument the need for an inferential relation is driven by a supposed normative relation (running, asymmetrically, from perception to belief). Cognitive penetration runs the other direction, but if it is a normative relation, then the same principle could be used to motivate Pylyshyn’s semantic criterion. But cognitive penetration is not a normative relation (perhaps quite the contrary, as discussed below). So Pylyshyn’s semantic criterion requires some alternative argument.

Or perhaps Pylyshyn’s semantic criterion requires an alternative strength. The condition might instead be interpreted in a way that emphasizes representational content without emphasis on inferential relations between cognitive and perceptual states. In at least one place Pylyshyn (1999) does suggest this interpretation, “This is the essence of what we mean by cognitive penetration: it is an influence that is coherent…when the meaning of the representation is taken into account” (365, note 3). This relation needn’t be rational or logical in the sense that it preserves truth. Instead, the content of the belief (or other prior cognitive state)—what it is about—simply must have a non-arbitrary effect

2 This is a substantial literature. See Crane 1992; Brewer 1999; Heck 2000; Byrne 2005. And see both Bermúdez and Cahen 2011 and Siegel 2010 for useful summaries of this and related debates.

3 Pylyshyn does sometimes talk about the relation as a rational one (or quasi-rational one), but there is little reason to think that ‘rational’ here is being used in a normative sense. And if it is, there is little reason to think that such a description is accurate. The question is whether cognition directly influences perception in some non-trivial way. There is no motivation for the claim that this influence could only be a reason-guided, rational one. We might prefer this, epistemically speaking, but there is little empirical reason to think that we are such lucky organisms.
on perception. So this is a kind of operationalist reading of the semantic criterion. Cognitive penetration requires that we could (perhaps in fairly idealized conditions) identify how the representational content of the background cognition has affected the content of perception (and/or its processing). This version of the semantic criterion is more plausible, but its motivation may still be doubted. Representational intelligibility may be necessary for cognitive penetration insofar as one wants to empirically test for the phenomenon, as Pylyshyn and others rightly hope to do. But short of mere stipulation, this motivation is insufficient to support a constraint on the metaphysics (or for that matter, physical facts) of the mind.4

This lands us back where we started: cognitive penetration is a causal relation, but this is just a start. Pylyshyn’s semantic criterion attempts to supplement the causal relation, but the criterion is questionable. What is needed is a further condition (or conditions) that qualify the causal relation appropriately but without unnecessary appeal to normative or operationalist considerations. A distinct alternative in the literature is to further qualify the nature of the relevant causal relation. Generalizing from Stokes (forthcoming), a possible definition goes as follows.

\begin{align*}
\text{(CP)} & \text{ A perceptual experience } E \text{ is cognitively penetrated if and only if (1) } E \text{ is causally dependent} \\
& \text{ upon some cognitive state } C \text{ and (2) the causal link between } E \text{ and } C \text{ is internal and mental.}
\end{align*}

4 One way to see this, is to consider some of the important consequences of cognitive penetrability: modularity of mind and the knowledge-providing role of perception. These consequences are discussed in section II below, but for now the point is just this: cognitive penetration, if actual, will bear consequences for modular architectures of mind and for the supposed epistemic roles of perception, no matter whether it is a phenomenon that we can adequately test. So testability (by representational intelligibility) cannot constrain the defined nature of the target phenomenon.
This definition makes clear what is ambiguous in other accounts, namely, that the (penetrated) relatum is perception at the level of experience. And the causal relation between experience and cognition is one of dependence. One simple way to understand this is counterfactually: if C did not occur (antecedent to E), then E would not occur. Thus the phenomenal character of one’s visual or auditory or other perceptual experience, depends non-trivially upon a background belief, desire, or other cognitive state. (2) further qualifies this causal link in order to rule out trivial cases and attention-shift cases. Thus the causal chain must run from E back to C without deviating from a mental series of events internal to the perceiving subject. This leaves significant wiggle room—for instance, C may cause intermediary cognitive states, which then cause E. (2) also rules out any case where C causes some overt action antecedent to the affected experience—for instance, rotating one’s body or plugging one’s ears. In fact, a definition like this has the advantage of ruling out a variety of alternative interpretations that critics use to reject putative cases of cognitive penetration. So evidence for experiences that meet CP would plausibly be evidence that both sides of the debate would have to accept.

As might be expected, this definition is unlikely to be immune to counterexample. One worry concerns the ‘mental’ qualification in (2). For instance, an example of Fiona Macpherson’s might be adjusted and invoked here. Suppose I suffer extreme exam anxiety and I believe that I am about to take an exam. This belief causes, internally, another mental state, namely the pain that accompanies a migraine. This pain further causes, again internally, a series of visual experiences where everything appears in a reddish hue. On the face of it, this scenario satisfies CP. But one may worry that this is not an instance of the relevant cognitive influence, since the causal chain from cognitive

5 These alternatives are discussed in section III below.
state to perceptual experience takes a circuitous route—even if internal and mental. Macpherson’s view is that this kind of case re-emphasizes the need for something like Pylyshyn’s semantic criterion: since the red hue experience in no way semantically coheres with the belief about the exam, it is not a case of cognitive penetration (Macpherson, forthcoming).

The moral here is one familiar to philosophy: defining a phenomenon, however intuitive it may seem upon initial gloss, is no easy task. Nonetheless the above should suffice to provide the reader with a working characterization of cognitive penetration. And, as suggested below, considering the supposed consequences of the phenomenon and some relevant empirical studies sheds additional light.

II. Why cognitive penetrability matters

An alternative method for clarifying the phenomenon is to turn away from definitions and instead to reasons for which the phenomenon—even if imprecisely characterized—is supposed to be of importance to philosophy and cognitive science. There are at least three supposed consequences of the phenomenon: implications for theory ladenness and rational theory choice, the knowledge-providing role of perception, and mental architecture.

Beginning in the 1950s, philosophers of science challenged a traditional empiricist tenet regarding how scientific theories are chosen (Hanson 1958, 1969; Kuhn 1962; Feyerabend 1962). Assuming that, say, two incompatible scientific theories are equally sound—that is, both theories are internally coherent, offer clear hypotheses and predictions, are equally simple and parsimonious, and so on—then there must be some final court of appeal for adjudicating between them. The empiricist tradition suggests an
obvious and intuitive solution: test both theories by comparing their respective hypotheses and predictions with perceptual observation of the world. And the theory that best comports with these observations is the one that we should, rationally, accept. Thus rational theory choice requires that perceptual observation achieves some significant objectivity.

The empiricist assumption identified and challenged by Hanson and others, is that perceptual observation (and, for that matter, judgements of and reports about perception) is neutral with respect to the theories being tested; it can be used safely and reliably as evidence for or against a theory. Hanson et. al. argued that this assumption was false: perception is laden with theory. This claim, if true, undermines the basic empiricist tenet: one cannot rationally adjudicate between theories on the basis of perceptual observation if these observations are already infected with beliefs and other mental states. So the cognitive penetration of perception threatens the scientific enterprise, where the penetrating cognitive states are doxastic commitments to one or another scientific theory.

This challenge generalizes to a second epistemic consequence. Another traditional view in western philosophy is that perception, at least in the majority of cases, can provide knowledge. When one has an ordinary visual experience—one’s eyes and visual cortices are functioning properly, the lighting is normal, there are no tricks, mirrors, or other illusion-inducing features of the environment—one typically forms beliefs on the basis of this experience. And as contemporary epistemologists put it, one’s perceptual experience epistemically justifies one’s belief. In the case that this belief is true—which, again, in the

6 In fact, these philosophers maintain a number of claims, varying in strength regarding theory-ladenness. For example, Hanson’s view was that perceptual experience itself is generally theory-laden. Kuhn worried about the theory-ladenness of perceptual judgement and observational reports, in addition to experience.
7 For a recent discussion, see Brewer and Lambert 2001. Their view is that scientific observation is theory-laden, but only when the subject of observation is ambiguous or somehow informationally degraded.
majority of cases it will be—one thereby comes away with some knowledge about the world. Some empiricists, moreover, take perceptual experience to provide a foundation for knowledge. Our knowledge about the world will, ultimately, be based on experience, with perception providing the terminus in the long chain of reasons that support one’s putative knowledge about the world.

However, if perception can be infected with background beliefs and other cognitive states, then the supposed epistemic role of perception is threatened. Susanna Siegel provides an instructive example. “The challenge to perceptual justification posed by cognitive penetrability arises because it seems to introduce a circular structure to belief-formation…For instance, suppose Jill believes that Jack is angry at her, and this makes her experience his face as expressing anger. Now suppose she takes her cognitively penetrated experience at face value, as additional support for her belief that Jack is angry at him (just look at his face!). She seems to have moved in a circle, starting out with the penetrating belief, and ending up with the same belief, via having an experience” (Siegel 2011). This circular belief formation is epistemically pernicious. And the situation is even more pernicious if, as some have argued, desires, hopes, wishes and other non-doxastic states penetrate perception (Stokes, forthcoming). The fact that I want some proposition P to be true—say, I want to be taller than you—provides no reason to have a belief that P. Wishful thinking may be common, and in some cases it may be practical, but it isn’t the sort of thinking that ever provides knowledge. I can’t know that I am taller than you on the basis of a desire with the same content. So, plausibly, if a perceptual experience is

8 The reader will note that this way of framing the discussion begs a number of highly debated questions. To name three: questions about general skepticism; questions about internalist vs. externalist epistemic justification (for classic sources see: Alston 1989; Chisholm 1977; Dretske 1971; Armstrong 1973; Goldman 1979; for a recent collection see: Kornblith 2001); and finally the adequacy of the standard (JTB) account that takes knowledge to be some variant of justified true belief (Gettier 1963; and for a recent alternative to JTB, see Williamson 2000).
cognitively penetrated by desire or some other orectic mental state—importantly, such that the experience would not be had without that desire—then that experience cannot justify a belief or provide knowledge.⁹

It is important here to identify some psychological and neurological phenomena whose relevance to these epistemic worries is controversial. In a debate with Jerry Fodor, Paul Churchland invokes phenomena where perceptual systems employ “theoretical assumptions” (Churchland 1979; 1988; Fodor 1984; 1988). Churchland asks us to consider phenomena like colour constancy—for example, where there are differences in illumination on two distinct points of a uniformly red tomato, one still sees the tomato as being red at both points—and amodal completion—where an occluded object, say a cat behind a picket fence, is visually perceived as a whole object in spite of some of its parts not being visible to the perceiver. The perceptual system, Churchland suggests, must make a number of assumptions about what is perceived, and this renders perception highly theoretical. Fodor, who maintains the cognitive impenetrability of perception, argues that these “assumptions”, although clearly operative in perceptual processing, leave “perception neutral with respect to almost all theoretical disputes, [and so] couldn't ground any general argument for the unreliability of observation” (Fodor 1988:189). These features of the visual system are perhaps plastic such that they are shaped by encounters with one’s environment. But these are not changes that human perceivers in any relevant sense learn, and have nothing to do with beliefs, theories, or other doxastic commitments.

⁹ Siegel (forthcoming) maintains that it is a substantive question whether certain (irrational) etiologies of perception, which mirror some epistemically problematic etiologies of belief, are similarly epistemically problematic. She argues that some etiologies of experience are rationally assessable, and take the same form as epistemically problematic belief etiologies. Among these are cognitively penetrated experiences, including those penetrated by desire. These experiences, by virtue of their “checkered past”, downgrade the justification-conferring role of the relevant experiences. See also Lyons (forthcoming).
that we may have. So Churchland’s “assumptions” leave the epistemic normativity of perception untouched.

This raises a second issue: how does learning affect perception over time? The above discussion proceeds on the assumption that cognitive penetration, if it occurs and has the relevant epistemic consequences, occurs (relatively) synchronically: a cognitive state immediately influences one’s present perceptual experience, and the putative theory-neutrality of perception is thereby undermined. Churchland, in the same debate, argues that diachronic penetration of perception may be equally relevant. To take one example, consider the way that perceivers adapt to the use of inverting lenses—lenses that, in short, turn one’s visible world upside down. On the standard story, the lenses are initially radically disorienting for subjects, impairing both judgement and eye-coordinated action. But after a learning period of consistently using and acting with the lenses, typically a week, subjects quickly recover to perform perceptual and motor tasks normally (Stratton 1897; Kottenhoff 1957; Taylor 1962). Churchland interprets this as penetration of perception across time: subjects learn new relations between movement and visual experience, re-formulate expectations accordingly and, eventually, perceive the world as they did before wearing the inverting lenses.10

A related debate concerns the admissible contents of experience. Recently, some philosophers have argued that perceptual experience represents not just low-level properties like colours and shapes (in the case of vision), but also high-level properties like

10 For this case to be relevant, the adaptation must be of one kind rather than another. Churchland’s assumption is that the phenomenal character of experience, after adaptation, returns to the right-side up character it had prior to the lenses. But there is another possibility: the phenomenology of experience with the goggles may stay the same—that is, upside down—but one learns, post-adaptation, to “deal with it” as we say. The descriptions by Stratton are, at best, ambiguous between these two possibilities (and in some places favour the second). See Hurley and Noe 2003, who argue for the former interpretation; and see Prinz 2006 and Schwitzgabel (manuscript) for skepticism regarding that interpretation. For a related discussion see McCauley and Henrich 2006.
natural kind, agential, and causal properties.11 One of Susanna Siegel’s arguments for high-level contents relies on cases where the phenomenology of experience allegedly changes as a result of the acquisition of recognitional capacities or beliefs. What it is like subjectively to look at Cyrillic text, as well as hear the language when spoken, will change for you after you learn the Russian language. The face of a friend as experienced will differ phenomenologically from when you first made the friend. These changes in phenomenology are common, depend on cognitive processes, and take place gradually over time (Siegel 2006).12

The cognitive penetrability theorist may resist these diachronic cases by noting that the putative effects on perception result from a long-term learning or conditioning process, and thus lack the immediate cognition-to-perception relation necessary for cognitive penetration. Churchland’s response is that concerns about perception being infected by theory are not concerns about instantaneous changes in belief (which then effect a change on perception). They are instead concerns about the observational effects of long-term and regularly evolving theoretical commitments. So if it is theory-ladenness that is (at least partly) at stake, then an insistence on synchronic cognitive penetration is unmotivated. More defensibly, Fodor insists that the changes to perception that occur in scenarios like the above involve a recalibration of the sensory system by the sensory system. There are good evolutionary reasons for this kind of plasticity, and none of it implies cognitive penetrability (Fodor 1988). It is difficult to determine whether inverting lens cases or cases involving change in recognitional capacity are instances of cognitive

12 See Crutchfield (forthcoming) for discussion of the relation between admissible contents of experience and cognitive penetration.
penetration properly called. But what matters most in this context of discussion is instead whether these phenomena imply the consequences for scientific theorizing and knowledge.

In fact some have argued that cognitive penetration of perception is unnecessary to generate worries about theory-ladenness and the general epistemic role of perception. Even supposing that experience—the phenomenal content or character of seeing, hearing, and so on—is impenetrable by higher-level cognitive states, the same concerns may arise if perceptual beliefs are immediately and robustly influenced by background cognitive states and theories. So, even if Tycho Brahe (who believes in an earth-centered universe) and Johannes Kepler (who believes in a sun-centered universe) see the same thing as they watch the sunrise together—their visual experiences are, let’s suppose, phenomenologically identical—their background theoretical commitments may immediately influence the judgements made about these experiences. Brahe will judge and report seeing the sun moving vertically relative to a stationary horizon. Kepler will judge and report seeing a horizon that moves vertically to expose a stationary sun (Hanson 1958: 6-8). In such a case, perceptual judgement is insufficiently theory-neutral to provide adjudication between the competing theories (again, even if experience itself is theory-neutral). In a recent paper, Jack Lyons makes the same claim about the general epistemic worry: “if there’s something inherently epistemically evil about top-down influence, then most of our ordinary perceptual beliefs are in jeopardy, even if early vision is encapsulated.” Lyons’ view is that perceptual beliefs are regularly penetrated by background cognitive states. The question then becomes, which kinds of influences are

13 For a related empirical study, see Gunstone and White 1981.
epistemically pernicious, and by what epistemic standards (Lyons, forthcoming; see also Churchland 1979; 1988; Siegel, forthcoming).

The third important consequence concerns implications for mental architecture, and this does require some cognitive effect on perception itself. According to some modularity theories of mind, perceptual systems are domain-specific, functionally independent systems. So there is a visual module, auditory module, olfactory module and so on (though the individuation of modules could be more fine-grained). These modules are, in their strong form, informationally encapsulated. Although a perceptual module m may exchange input and output with other systems in the organism, m cannot, in the course of its processing, compute over information available in other modules or systems. Encapsulated modules are thus supposed to be cognitively impenetrable: cognitive systems are among those systems relative to which perceptual modules are computationally isolated (Fodor 1983). Since modularity of mind is an empirical thesis, evidence for cognitive penetration of perception will count against the truth of the thesis.

Informational encapsulation of modules is often described at the level of computational processing or mechanism. Much of Fodor’s emphasis is on the computational mechanisms of perceptual “input systems”, and their lack of access to information available in “central cognitive processors” (Fodor 1983). And Pylyshyn’s main line of defence for the cognitive impenetrability of perception concerns early vision: a functionally defined component in visual processing that computes 3D shape descriptions of objects (Pylyshyn 1999). The rhetoric in this discussion often suggests that evidence for the cognitive penetration of perceptual experience bears no consequence for encapsulated modularity of perceptual processes. But there are at least two reasons to think that the opposite is true.
First, Pylyshyn and others are right to emphasize the fact that the cognitive penetration of some components of perceptual processing does not, by itself, imply the cognitive penetration of experience, since conscious experience may be the result of or be identified with some broader class of processing, and certain subsets of perceptual processing may not result in conscious experience at all. For the same reason, one cannot infer from the apparent penetration of experience to the penetration of any particular stage in perceptual computation. However, the cognitive penetration of experience implies the cognitive penetration of perceptual processing at some stage. Whether one takes experience to be identified with, constituted by, (metaphysically) determined by, or the output of perceptual processes, a difference in perceptual experience implies a difference in perceptual process. This implication holds no matter how one’s metaphysics of mind varies according to these alternatives. So if experience is penetrated, then information processed (or outputted) by cognitive systems directly influences the processing of perceptual systems.

Second, it is important to recall some primary motivations for encapsulated modules. As Fodor puts it, the envisioned modular architecture would be evolutionarily advantageous, since it involves the “isolation of perceptual analysis from certain effects of background belief and set; and…this has implications for both the speed and objectivity of perceptual integration” (Fodor 1983: 43; emphasis added). Since an encapsulated module rigidly performs its computational function and with no interference from extraneous higher-level information, it can rapidly provide perceptual representations to the organism. And since these computations are supposed to be insensitive to what the

14 Some visual processing might, according to some theories, result only in sub-personal motor-guidance. See Milner and Goodale 1995; Clark 2001; Campbell 2002; Matthen 2005.
organism knows, expects, or wants, the resulting perceptual representations more reliably inform the organism about its environment (Fodor 1983: 68-70; see also Pylyshyn 1980; 1984). It is this second epistemic point that is relevant here. A concern with the reliability or accuracy of perception is a concern with perceptual representation or experience, not merely processing. It makes sense to discuss the reliability of perception only in these terms: personal-level (mis)representations, not sub-personal computational mechanisms, lead or mislead the perceiver. One forms beliefs and acts on the basis of what one sees, hears, and so on. So insofar as the modularity theorist is largely motivated by this putative benefit of encapsulated perceptual modules, there must be a concern with perception at the level of experience.\(^{15}\)

III. Evidence and interpretation\(^{16}\)

While the phenomenon might be an intuitive one, evidence for cognitive penetration is contested. The goal here is to offer a brief survey of some of the debated evidence, and in turn to glean a number of skeptical interpretations that oppose a cognitive penetrability thesis.

Some have argued that top-down or “reentrant” pathways—neural connections that, evidently, enable signals from brain areas believed to process higher or conceptual information to much lower or primitive areas—provide evidence for cognitive penetration (Churchland 1988, 1989; see also DiLollo et. al. 2000). While this remains an

\(^{15}\) For additional examples of strong modularity theories, see Fodor 1985 and Sperber 1996. For more on the relation between modularity and cognitive penetration, see Macpherson (forthcoming); and Stokes and Bergeron (manuscript).

\(^{16}\) As should be expected, this section in no way provides an exhaustive review of relevant empirical literature, nor does it provide complete reviews of the studies discussed. Instead, it provides an overview of a variety of data—both old and new—that (a) are representative of some of the experimental methodologies that illuminate (even if they do not provide existence proofs for) the target phenomenon and (b) in many cases are illustrative of a variety of alternative (non-cognitive penetration) interpretations.
empirical possibility, it is far from sufficiently proved. As a number of authors have argued, this inference would require a relatively uncontroversial mapping from mental functions or states onto neural structures, and neuroscience is far from achieving this. So while the data on neural pathways may be suggestive, it underdetermines any conclusions about cognitive penetrability (Fodor 1988; Gilman 1991; Pylyshyn 1999; Raftopoulos 2001). By the same token, current neurological and neurocomputational data are insufficient to prove that perception is impenetrable.

Therefore, empirical evidence for (or against) cognitive penetration is best drawn from considerations and studies at the behavioural or psychological, rather than neurological, level. Much of this data, since it relies heavily on subjective reporting, suffers from the usual possible confounds and is open to a number of alternative interpretations.

Early defenders of cognitive penetrability relied heavily on evidence, largely anecdotal, concerning familiar illusions and ambiguous figures. For example, Hanson (1958) suggests that when one looks at the famous old woman/young woman reversible figure (see Figure 1), one can, at will, have two distinct visual experiences. And an early study showed that subjects with prior exposure to unambiguous photos of either an older woman or a young woman were far more likely to see, respectively, the figure as an old woman or a young woman (Leeper 1935). While seeing the old woman vs. seeing the young woman are very plausibly distinct visual experiences in spite of the same stimulus (Boring 1930), the critic can resist these cases in one of two ways. The experiments in question show, one can argue, certain priming effects on perceptual receptivity, but this is not an effect of a belief or background theory. According to this intra-perceptual interpretation, the change in perceptual experience or processing is one effected by perception itself.

17 Kuhn 1962 and Churchland 1988 make similar appeals.
Second, critics can respond to cases like this with an *attention-shift interpretation*. What one does when one “switches” between the old and young woman experience is to deliberately focus one’s attention on different points of the drawing which, in turn, results in distinct perceptual experiences. But this scenario is no different in kind from one where cognitive states like belief and desire motivate an action(s) which in turn results in changed experiences. I want the beer; so I drink the beer; so I taste the beer. If this is cognitive penetration then the concept is trivial.\(^{18}\)

Hanson and others also appealed to the work of the New Look psychologists of the middle 20\(^{\text{th}}\) century. These psychologists, led largely by Jerome Bruner, held a view that perception and cognition were entirely continuous with one another; one’s perception is always framed by one’s background mental set—one’s beliefs, desires, expectations, conceptual categories, and so on. This view, committed to a universal claim about perception is easy prey to counterexample. Modularity theorists are fond of invoking cases where perception appears rigidly encapsulated. For example, although one may know that the lines in the Muller-Lyer illusion are of the same length, one cannot see them as being the same length (see Figure 2).\(^{19}\) As a general psychological theory, then, New Look has been mostly abandoned. But it should be noted that many of the individual studies, although insufficient to support a universally quantified New Look thesis, remain plausible evidence for an existentially quantified cognitive penetration thesis.\(^{20}\) And the opposing modularity thesis, as an empirical hypothesis, is an insufficient

\(^{18}\) For an example of this reductio, see Fodor 1988: 191.

\(^{19}\) Additionally, a variety of empirical research suggests instances where perception is not relevantly affected by background cognitive states. See Carter and Schooler 1949; Klein, Schlesigner, and Meister 1951; Lysak and Gilchrist 1955; Tajfel and Wilkes 1963.

\(^{20}\) In addition to those studies discussed below, relevant studies in the New Look spirit include: Bruner and Postman 1948; Dukes and Bevan 1952; Bruner and Rodrigues 1953; Blum 1957. See Bruner 1957 for an overview.
reason to reject any of the New Look data or more recent studies inspired by New Look. Therefore, evidence must be taken on a case-by-case basis, and inferences drawn must be abductive.

Balcetis and Dunning (2006) performed a series of studies aimed at testing whether desires influence perceptual experience. In some of these studies, subjects were briefly exposed to an ambiguous figure and then asked to categorize the figure. Depending upon how they categorized the figure, subjects would (and knew that they would) receive either a desirable or undesirable food. For example, a subject might be rewarded with a glass of orange juice if she categorized Figure 3 (see below) as a letter, versus an apparently disgusting concoction if she categorized the same figure as a number. In all of the relevant studies, Balcetis and Dunning’s results strongly suggest that the food preferences bias how the ambiguous figure is seen. However, since categorization reports are made after the figures are displayed, critics may object that in these cases subjects are reporting their memories of the experience rather than the experience itself. Thus the memory interpretation concludes that these data only evidence the influence of desire on a cognitive state like memory.

A rich area of recent study has focused on apparent cognitive effects on visual spatial perception. Subjects experiencing fear from atop a steep hill (e.g. when asked to imagine descending the hill while standing on a skateboard) more greatly overestimate the slant of the hill (both in verbal report and visual matching task) (Stefanuci and Proffitt

21 For an earlier set of desire/food-related studies, and criticism, see Epstein 1961; Lazarus et. al. 1953; Saugstad 1966, 1967; Wolitzky 1967.
22 Keith Payne and colleagues have performed a number of important studies on racial prejudice and its apparent effect on perception. For example, American subjects more frequently mis-classify a hand tool as a gun when primed by black faces (Payne 2001). But because these experiments involve methods where subjects make reports only after the target image [a handgun or a hand tool] has been masked, here too the memory interpretation might be invoked by defenders of cognitive impenetrability.
Similarly, subjects who both report greater present fear and rate high on standard acrophobia measures more greatly overestimate vertical distance and size when viewing from a high place (Stefanuci and Proffitt 2009). Subjects who perform poorly on a sports task make correlative spatial judgements. For example, subjects who do poorly on a series of American football field goal kicks comparatively underestimate the width of the goal posts (Witt and Dorsch 2009). And objects that perform immediate goals (a bottle of water when thirsty) are judged closer than unwanted objects both by metric report and an action-based report (Balcetis and Dunning 2010). Whether these data support a cognitive penetrability thesis is debatable. Because these experiments involve the report of spatial judgements, critics may invoke an alternative judgement interpretation. This interpretation has it that experience across control and experimental subjects of the relevant stimuli is unaffected by background cognitive states, but the judgements made or beliefs formed about those experiences (or about the experienced objects) varies with the relevant background cognitive states. But this, just like the above putative effects on memory, only supports a relatively uncontroversial phenomenon, one where cognitive states influence other cognitive states.

So, there are a variety of promising data for cognitive penetrability theorists but also a variety of alternative interpretations for defenders of cognitive impenetrability. The best current data—in the sense that it most obviously evades these alternative interpretive

23 Another possible interpretation of some of this data invokes the supposed distinction between motor-guiding vision—processed in the brain’s dorsal stream—and consciously experienced descriptive vision—processed in the ventral stream (Milner and Goodale 1995). For example, some of the experiments in Balcetis and Dunning 2010 required subjects to make distance estimates by tossing a small beanbag at the desired object. One might explain this effect as not one on conscious descriptive visual experience, but merely one where desire directly guides action via the dorsal stream. This would not be cognitive penetration as most theorists understand it.
strategies—seem to result from online experimental methods that involve perceptual reports simultaneous with target perceptual experiences.

A classic such case comes from the New Look psychologists. Bruner and Goodman 1947 found that children significantly overestimate the size of coins relative to cardboard discs of analogous size. The desire for money evidently influences the perception of money. In a more recent study inspired by New Look psychology, adult perceivers estimate identically sized discs in a way that substantially varies depending upon whether the discs contain negatively valenced images versus neutral or positively valenced images. The researchers conclude that the subjects have and apply background values to the varying images, and this influences size perception of the discs (van Ulzen et. al. 2008). In a study by Delk and Filenbaum (1965) subjects performed an online colour matching task involving paper shapes of characteristically red objects (an apple) and objects not characteristically red (a mushroom). Although all of the shapes were uniformly orange, in attempting to match the characteristically red objects, subjects over-adjusted a background to be more red (versus yellow), suggesting that concepts of or knowledge about such objects influences colour experience. More recently, researchers have found that conceptual categories even affect performance on achromatic/colour tasks. Thus Hansen et. al. (2006) found that when subjects are asked to adjust a naturally (yellow) coloured banana shape to appear achromatic, they over-compensate past the point of perfect grey, and adjust the shape into the opponent blue-hue range. This suggests that even once the shape is in fact grey, it still appears yellow-ish to the subjects. Levin and

24 See Stokes (forthcoming) for discussion of both of these studies.
25 For possibly conflicting results, see Olkonnen et. al. 2008, who found the effects to vary according to the “naturalness” of the target object. For example, 3D textured banana images were over-adjusted into the opponent blue-hue range, but the effect was small to insignificant for mere banana outline images. See
Banaji (2006) found that identically greyscale faces with features typical of the face of a white person versus those typical of a black person appear differently, as subjects report a lighter patch to match the typical white face as compared to the typical black face. This effect occurs even when the target faces are labelled as ‘WHITE’ or ‘BLACK’ but the features of the faces are identical.26

The common factor important to all of these studies is that they involve tasks where subjects are asked to inspect what they currently perceive, and report on the basis of that experience. So subjects are not reporting on the basis of memory. Moreover, there seems to be little room to appeal to overt acts of attention to explain the results: the actions required of subjects for task performance, and their perceptual fields, are generally static across control and experimental groups. And the effects all seem tied to undeniably cognitive factors, for example, to knowledge about natural and artefactual kinds and to racial stereotypes. Finally, though it is possible that the reports are of judgements made about one’s experience, to maintain the judgement interpretation one must maintain that, in these online circumstances, subjects are making reports that deviate from their current experience. For example, subjects in the Levin and Banaji 2006 study would on this interpretation be having phenomenally identical experiences of the racially labelled faces while consistently making judgements incompatible with, but on the basis of, those current experiences—judging the ‘WHITE’ labelled face to be lighter while, simultaneously, visually perceiving it as the same shade as the face labelled ‘BLACK’.

This looks less plausible than the opposing cognitive penetrability thesis. The inference to

Deroy (forthcoming) for a discussion of this case and others, and for an example of a intra-perceptual interpretation.

26 See Macpherson (forthcoming) for extended discussion of the Delk and Filenbaum 1965 and Levin and Banaji 2006 studies. Macpherson also argues for an indirect mechanism for cognitive penetration, whereby background cognitive states influence the phenomenal character of mental imagery which, in turn, influences (or is subjectively indistinguishable from) the phenomenal character of perceptual experience.
the best explanation, or so some have argued, is that experience is sometimes penetrated by cognition.

IV. Conclusion

None of the above studies provide conclusive evidence for the cognitive penetration of perception. This should be unsurprising. First, the target phenomenon is of substantial theoretical importance, with many theories at stake. Even if perception is theory-neutral, philosophers and scientists don’t abandon theories without a fight. Second, there is no single, uncontroversial definition of the target phenomenon. Third, the phenomenon as described is premised on a distinction between cognition and perception that is underdetermined by the neuroanatomical and behavioural evidence. As theorists of the mind, we may have very good reasons to make the cognition-perception distinction, but there is little reason to think that it is empirically discoverable in some robust way. Therefore, the concluding suggestion is that cognitive penetrability is defined by appeal to its supposed philosophical and scientific importance, and then tested accordingly.

The supposed consequences of the phenomenon (as outlined in section II) and the various alternative cognitive impermeability interpretations (as outlined in section III) work together. The skeptical interpretations are effective, if they apply, because they block the implications to the putative consequences. So, for example, if a phenomenon is best interpreted as involving an overt shift in attention, then it does not imply the relevant epistemic concerns and threat to modularity of mind. All of this is instructive: both the putative consequences and the skeptical interpretations can be used to construct a definition agreeable to both sides of the debate.
Therefore, future analyses of cognitive penetrability should be constrained in the following ways. A definition or analysis of cognitive penetrability will be successful just in case and to the degree that it (a) describes a phenomenon that has implications for theory-ladenness and rational theory choice, the knowledge-providing role of knowledge, or the modularity of mind (or better: some combination thereof); and (b) describes a phenomenon that is not aptly interpreted in any of the skeptical ways outlined above. These constraints are two ways of getting at the same thing: again, the alternative interpretations are effective because they preclude the consequences. But making them both explicit may be useful, since constraint (a) describes what cognitive penetration should be or imply, and constraint (b), what it should not be or imply. Furthermore, these constraints are admittedly not rigid; for example, no commitment is made regarding the number of consequences that must be implied by a good definition, nor what the nature of the implication must be. But these constraints do provide an informed way to better isolate a phenomenon that, if actual, all parties agree, would be important for how we theorize the mind.

In turn, once such a definition or analysis is in hand, empirical studies can be devised and executed accordingly: testing for cognitive penetration becomes testing for a phenomenon that bears the relevant consequences for the epistemology and architecture of mind. This is an ideal setting for collaborative theorizing of the mind, where philosophy is needed to identify the consequences and analysis of cognitive penetration, and empirical science is needed to design and perform suitable experiments. This combined effort promises a better understanding of how thought influences experience of the world around us.

Schwitzgabel, E. ‘The problem of known illusion and the problem of unreportable illusion.’ (unpublished manuscript).

____. ‘The Epistemic Impact of the Etiology of Belief.’ **Philosophical Studies** (forthcoming).

____ and V. Bergeron. ‘Modular architectures and Informational encapsulation: A dilemma.’ (unpublished manuscript).

